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What factors govern SOFC cathodes?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Current (Amps)

Vo
lta

ge
 (V

ol
ts

)

PNNL button cell test*
(various gas conditions)

*data courtesy of Steve Simner, PNNL

Why can’t we just measure
i-V characteristics vs. T, PO2, 
etc., and then fit to a model?
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Why can’t we just measure
i-V characteristics vs. T, PO2, 
etc., and then fit to a model?

• Many models fit the data equally 
well. 

• Poor understanding of individual 
rate-controlling processes. 

• Convolution of processes.

• Lack of quantitative information 
about the microstructure.

How do we better isolate the 
various rate-controlling factors?



Outline/Conclusions

• Isolating O2 reduction: studies of La1-xSrxCoO3-δ (LSC) 
thin-film electrodes using nonlinear impedance.

- Dissociative adsorption appears to be rate-controlling on LSC.
- Metallic band structure may be key to faster catalysis. 

• Quantitative analysis of microstructure:  3D imaging 
of porous La1-xSrxCoO3-δ electrodes using FIB-SEM.

- 3D microstructural data may allow quantitative analysis of 
porous electrodes.



How does one isolate O2 reduction rates?

This is more difficult to measure than you might imagine...

• Kinetics are difficult to isolate from other rates.
• Systems often restricted to linear driving force.



Studies of Thin-film Mixed-conducting Perovskite Electrodes

• Dense films of La1-xSrxCoO3-δ (LSC)
made by pulsed laser deposition
(500~1000 nm thickness)

- LSC (x=0.4) on polished polycrystalline Gd-doped ceria (Tohoku University)
- LSC (x=0.5) on single-crystal YSZ (University of Houston)

Interfacial resistance is small (2-3%).

Diffusion is fast (film acts as 
well-mixed oxygen reservoir)

Resistance dominated 
by O2 exchange kinetics



Electrochemical Impedance Spectroscopy (EIS)

Z =
∆V
∆i

EIS attempts to identify 
overlapping mechanisms via 
time scale.



Electrochemical Impedance Spectroscopy (EIS)

Z =
∆V
∆i
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Electrochemical Impedance Spectroscopy (EIS)

Z =
∆V
∆i

δ (PO2
)

C ~ δ
∂ lnδ

∂ ln PO2



What mechanisms are consistent with rexch ~ (PO2)1/2 ?

Limited by formation of 
reactive intermediate
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Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)
V = V0 + V1e

iω t + V1
*e− iω t( )

+ V2e
2iω t + V2

*e−2iω t( )+ ...

 i = i0 + %i cos(ωt)

LSF/ceria/LSF cell at 750°C in air (10 Hz)

Voltage FFT (magnitude)12x10-3

10

8

6

4

2

0

V
ol

ta
ge

 (v
ol

ts
)

806040200
Band ω (Hz)

4x10-3

3

2

1

0

C
ur

re
nt

 (a
m

ps
/c

m
2 )

806040200
Band ω (Hz)

Current FFT (magnitude)



Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

Voltage FFT (magnitude)12x10-3
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• The magnitude, sign, and 

phase of the harmonics are 
tied to nonlinearities of the 
underlying physics (analogy: 
music).

cos3(ωt) =
1
4

3cos(ωt) + cos(3ωt)( )

• Nonlinear harmonic analysis 
automatically filters out noise 
and nonperiodic drifts 
uncorrelated to the input 
perturbation.



Sources of Nonlinearity in a Mixed Conducting Oxide Film.
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Sources of Nonlinearity in a Mixed Conducting Oxide Film.

O2 + VOs

qs • + qadse
− É O2( )Os

qO2 •

O2( )Os

qO2 •
+ VOs

qs • + qdisse
− É 2OOs

qO •

OOs

qO • + VOb

•• + qincorpe
− É OOb

X + VOs

qs •

Adsorption:
Dissociation:

Incorporation:

Non-ideal thermodynamics 
requires that transition states 
depend on driving force.



Harmonic Response of a La0.6Sr0.4Co3-δ film
on Gd-doped ceria at 725°C vs. PO2

Model: 
limited by 

dissociation of 
chemisorbed 
intermediate

σ 0

2

σ 0

3



Harmonic Response of a La0.6Sr0.4Co3-δ film
on Gd-doped ceria at 725°C vs. PO2

• dissociation of chemisorbed intermediate
• molecular adsorption
• atomic incorporation into solid

Possible rate limiting phenomena

σ 0

2

σ 0

3



Harmonic Response of a La0.6Sr0.4Co3-δ film
on Gd-doped ceria at 725°C vs. PO2

Model: 
limited by 

dissociative 
adsorption

σ 0

2

σ 0

3



Harmonic Response of a La0.6Sr0.4Co3-δ film
on Gd-doped ceria at 725°C vs. PO2

σ 0

2

σ 0

3

Thermodynamic factor assuming 
limited by dissociative adsorption



Physical Interpretation of the Observed Kinetics

“dissociative adsorption”

qdiss = 4,O2 + VOs

qs • + qadse
− É O2( )Os

qO2 •

O2( )Os

qO2 •
+ VOs

qs • + qdisse
− É 2OOs

qO •

OOs

qO • + VOb

•• + qincorpe
− É OOb

X + VOs

qs •

Adsorption:
Dissociation:

Incorporation: β = 1

Implies:
• O2 only exists as a molecule, or fully reduced on surface.
• Forward rate obeys mass action (no energy barrier).



Physical Interpretation of the Observed Kinetics

• Reaction is limited by adsorbate lifetime and site availability,
not charge transfer. 

• Strong Arrhenius dependence corresponds to enthalpy of 
adsorption (not a true activation barrier). 



Physical Interpretation of the Observed Kinetics

• Proposed model explains O2 exchange measurements on bulk 
La1-xSrxCoO3-δ over a wide range of x, T and PO2.

• Metallic band structure appears to be important for stabilizing 
physisorbed O2, leading to faster rates.

(Pr,Ba)CoOy, (Ba,Sr)(Co,Fe)Oy?



NLEIS of a Porous La0.8Sr0.2CoO3-δ Electrode 
at 725°C vs. PO2
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NLEIS of a Porous La0.8Sr0.2CoO3-δ Electrode 
at 725°C vs. PO2
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• Simple 1-D models don’t explain 
higher harmonic data very well.

• Many uncertainties related to the 
details of microstructure.



3D Imaging of SOFC Electrodes with FIB-SEM

SEM
FIB 
milling

image 
slice

sample
depth

Ni

gas pores

YSZ

NSF Collaborative Research, Ceramics-DMR
Barnett and Voorhees (Northwestern)

Thornton (U. Michigan), Adler (U. Washington)
J.R. Wilson et al., Nature Materials, July 2006



3D Images of a Porous La0.8Sr0.2CoO3-δ Electrode 

Electrode area: 2.23 um-1 = 22,300 cm2/cm3



3D Images of a Porous La0.8Sr0.2CoO3-δ Electrode 

Electrode area: 2.23 um-1 = 22,300 cm2/cm3

Extent of electrode/electrolyte contact: 20.5%



3D Images of a Porous La0.8Sr0.2CoO3-δ Electrode 

Electrode area: 2.23 um-1 = 22,300 cm2/cm3

Extent of electrode/electrolyte contact: 20.5%
Transport tortuosity factors.



When are macrohomogeneous properties valid?

Must apply models to
actual 3D geometry

Juergen Fleig
Annu. Rev. Mat. Sci., 2003.



Baby steps: a cubic electrode particle
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σ = 0.1 σ = 100

σ = 1000 σ = 10000

Concentration Profiles of Increasing Perturbation Frequency



Higher Order Harmonic Data
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Conclusions

• By resolving both timescale and nonlinearity, NLEIS appears to be 
a promising technique for analyzing electrode kinetics.

• For metallic La1-xSrxCoO3-δ, oxygen exchange appears to be limited 
by dissociative adsorption onto limited vacant surface sites. 

• More surface vacancies, metallic band structure may be key to 
improved kinetics.

• 3D microstructural data stands to allow these methods to be 
extended to real microstructures.
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Thank You



NLEIS measurements



Power Series Expansion of Harmonic Response
ˆ V 1(α,ω0) = α ˆ V 1,1(ω0) + α 3 ˆ V 1,3(ω0) + α 5 ˆ V 1,5(ω0)
ˆ V 3(α,ω0) = α 3 ˆ V 3,3(ω0) + α 5 ˆ V 3,5(ω0)

Least Squares Fit

ˆ V k = V k + j ˜ V k

= Real Part 
of the Response

V k

= Imaginary Part 
of the Response
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Motivation

• O2 reduction remains a source 
of polarization and degradation 
in solid oxide fuel cells.

• To improve cathodes, we 
must better understand the 
factors limiting them.


